High Order Explicit Two-Step Runge-Kutta Methods for Parallel Computers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Order Explicit Two-Step Runge-Kutta Methods for Parallel Computers

R n , parameters A aij R s , c b R , 1l : 1 1 T and step size hm. F denotes the straightforward extension of f to R . Here, denotes the Kronecker tensor product. Notice that the EPTRK method 2 requires only one sequential function evaluation per step on a parallel computer with s processing elements. Numerical experiments with a variable step size implementation on a shared memory computer have...

متن کامل

High Order Explicit Two - Step Runge - Kutta

In this paper we study a class of explicit pseudo two-step Runge-Kutta methods (EPTRK methods) with additional weights v. These methods are especially designed for parallel computers. We study s-stage methods with local stage order s and local step order s + 2 and derive a suucient condition for global convergence order s+2 for xed step sizes. Numerical experiments with 4-and 5-stage methods sh...

متن کامل

A Class Of Implicit-Explicit Two-Step Runge-Kutta Methods

This work develops implicit-explicit time integrators based on two-step Runge-Kutta methods. The class of schemes of interest is characterized by linear invariant preservation and high stage orders. Theoretical consistency and stability analyses are performed to reveal the properties of these methods. The new framework offers extreme flexibility in the construction of partitioned integrators, s...

متن کامل

Order Barriers for Continuous Explicit Runge - Kutta Methods

In this paper we deal with continuous numerical methods for solving initial value problems for ordinary differential equations, the need for which occurs frequently in applications. Whereas most of the commonly used multistep methods provide continuous extensions by means of an interpolant which is available without making extra function evaluations, this is not always the case for one-step met...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computing and Information Technology

سال: 2000

ISSN: 1330-1136,1846-3908

DOI: 10.2498/cit.2000.01.02